Search results for "Organisk kemi"

showing 10 items of 10 documents

Modified ent-Abietane Diterpenoids from the Leaves of Suregada zanzibariensis

2022

The leaf extract of Suregada zanzibariensis gave two new modified ent-abietane diterpenoids, zanzibariolides A (1) and B (2), and two known triterpenoids, simiarenol (3) and β-amyrin (4). The structures of the isolated compounds were elucidated based on NMR and MS data analysis. Single-crystal X-ray diffraction was used to establish the absolute configurations of compounds 1 and 2. The crude leaf extract inhibited the infectivity of herpes simplex virus 2 (HSV-2, IC50 11.5 μg/mL) and showed toxicity on African green monkey kidney (GMK AH1) cells at CC50 52 μg/mL. The isolated compounds 1–3 showed no anti-HSV-2 activity and exhibited insignificant toxicity against GMK AH1 cells at ≥100 μM. p…

PharmacologyOrganisk kemibioaktiiviset yhdisteetOrganic ChemistryPharmaceutical SciencemyrkyllisyysluonnonaineetAnalytical ChemistryterpeenitComplementary and alternative medicinetyräkkikasvitDrug DiscoveryMolecular Medicineinhibiittorit
researchProduct

Crystal Structures and Cytotoxicity of ent-Kaurane-Type Diterpenoids from Two Aspilia Species

2018

A phytochemical investigation of the roots of Aspilia pluriseta led to the isolation of ent-kaurane-type diterpenoids and additional phytochemicals (1⁻23). The structures of the isolated compounds were elucidated based on Nuclear Magnetic Resonance (NMR) spectroscopic and mass spectrometric analyses. The absolute configurations of seven of the ent-kaurane-type diterpenoids (3⁻6, 6b, 7 and 8) were determined by single crystal X-ray diffraction studies. Eleven of the compounds were also isolated from the roots and the aerial parts of Aspilia mossambicensis. The literature NMR assignments for compounds 1 and 5 were revised. In a cytotoxicity assay, 12α-methoxy-ent-kaur-9(11),1…

Lung Neoplasms<i>Aspilia mossambicensis</i>Pharmaceutical ScienceCrystal structureAspilia plurisetaAsteraceaePlant Roots01 natural sciencesAnalytical Chemistryent-kaurane diterpenoid.Drug DiscoveryAspilia mossambicensisCytotoxicityEnt kauraneta116Organisk kemiMolecular StructurebiologyChemistryLiver NeoplasmsHep G2 CellsMass spectrometricterpeenitPhytochemicalChemistry (miscellaneous)solunsalpaajatMolecular MedicinecytotoxicityasterikasvitDiterpenes KauraneAspilia<i>ent</i>-kaurane diterpenoidCarcinoma HepatocellularCell SurvivalStereochemistry010402 general chemistryta3111Articlelcsh:QD241-441lcsh:Organic chemistryHumans<i>Aspilia pluriseta</i>Physical and Theoretical ChemistryIC50x-ray crystallography010405 organic chemistrycytostatic drugsOrganic Chemistryta1182Adenocarcinoma Bronchiolo-AlveolarPlant Components AerialAsteraceaebiology.organism_classificationluonnonaineetX-ray crystal structurenaturally occurring substances0104 chemical sciencesA549 Cellsent-kaurane diterpenoidröntgenkristallografiaterpenesMolecules
researchProduct

Crotofolane Diterpenoids and Other Constituents Isolated from Croton kilwae

2023

Six new crotofolane diterpenoids (1-6) and 13 known compounds (7-19) were isolated from the MeOH- CH2Cl2 (1:1, v/v) extracts of the leaves and stem bark of Croton kilwae. The structures of the new compounds were elucidated by extensive analysis of spectroscopic and mass spectrometric data. The structure of crotokilwaepoxide A (1) was confirmed by single -crystal X-ray diffraction, allowing for the determination of its absolute configuration. The crude extracts and the isolated compounds were investigated for antiviral activity against respiratory syncytial virus (RSV) and human rhinovirus type-2 (HRV-2) in HEp-2 and HeLa cells, respectively, for antibacterial activity against the Gram-posit…

PharmacologyOrganisk kemiaromaattiset yhdisteetbioaktiiviset yhdisteetcarbonOrganic Chemistryinfrared lightPharmaceutical SciencealkylsluonnonaineetAnalytical ChemistryterpeenitComplementary and alternative medicinetyräkkikasvitDrug Discoverycarbon-14Molecular Medicinenuclear magnetic resonance spectroscopy
researchProduct

A New Benzopyranyl Cadenane Sesquiterpene and Other Antiplasmodial and Cytotoxic Metabolites from Cleistochlamys kirkii

2019

Phytochemical investigations of ethanol root bark and stem bark extracts of Cleistochlamys kirkii (Benth.) Oliv. (Annonaceae) yielded a new benzopyranyl cadinane-type sesquiterpene (cleistonol, 1) alongside 12 known compounds (2&ndash

Organisk kemibenzopyranyl sesquiterpenesyöpähoidotCleistochlamys kirkiiOrganic ChemistrymalariaAnnonaceaecleistonol<i>Cleistochlamys kirkii</i>antiplasmodial activityluonnonaineetArticlelcsh:QD241-441terpeenitlcsh:Organic chemistrylääkekemiacytotoxicityMolecules
researchProduct

Hofmann-Like Frameworks Fe(2-methylpyrazine)n[M(CN)2]2 (M = Au, Ag) : Spin-Crossover Defined by the Precious Metal

2020

Hofmann-like cyanometalates constitute a large class of spin-crossover iron(II) complexes with variable switching properties. However, it is not yet clearly understood how the temperature and cooperativity of a spin transition are influenced by their structure. In this paper, we report the synthesis and crystal structures of the metal&ndash;organic coordination polymers {FeII(Mepz)[AuI(CN)2]2} ([Au]) and {FeII(Mepz)2[AgI(CN)2]2} ([Ag]), where Mepz = 2-methylpyrazine, along with characterization of their spin-state behavior by variable-temperature SQUID magnetometry and M&ouml;ssbauer spectroscopy. The compounds are built of cyanoheterometallic layers, which are pillared by the bridging Mepz…

chemistry.chemical_classificationLarge classOorganisk kemi010405 organic chemistryIronSpin transitionCooperativityPolymerCrystal structureAtmospheric temperature range010402 general chemistrySpin crossover01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographychemistrySpin crossovermagnetismMössbauer spectroscopyPhysical and Theoretical ChemistryMOF
researchProduct

Secoiridoids and Iridoids from Morinda asteroscepa

2020

The new 2,3-secoiridoids morisecoiridoic acids A (1) and B (2), the new iridoid 8-acetoxyepishanzilactone (3), and four additional known iridoids (4–7) were isolated from the leaf and stem bark methanol extracts of Morinda asteroscepa using chromatographic methods. The structure of shanzilactone (4) was revised. The purified metabolites were identified using NMR spectroscopic and mass spectrometric techniques, with the absolute configuration of 1 having been established by single-crystal X-ray diffraction analysis. The crude leaf extract (10 μg/mL) and compounds 1–3 and 5 (10 μM) showed mild antiplasmodial activities against the chloroquine-sensitive malaria parasite Plasmodium falciparum (…

Iridoidmedicine.drug_classMetabolitePharmaceutical Science01 natural sciencesAnalytical Chemistrychemistry.chemical_compoundDrug Discoverymedicineorgaaniset yhdisteetnuclear magnetic resonance spectroscopyPharmacologyantimikrobiset yhdisteetStem barkOrganisk kemiChromatographybiology010405 organic chemistrymatarakasvitOrganic ChemistryAbsolute configurationBiochemistry and Molecular BiologyalkylsPlasmodium falciparumbiology.organism_classificationluonnonaineetMass spectrometric0104 chemical sciences3. Good health010404 medicinal & biomolecular chemistryComplementary and alternative medicinechemistryMorindachemical structureMolecular Medicineorganic compoundsBiokemi och molekylärbiologi
researchProduct

Prenylated Flavonoids from the Roots of Tephrosia rhodesica

2020

Five new compounds—rhodimer (1), rhodiflavan A (2), rhodiflavan B (3), rhodiflavan C (4), and rhodacarpin (5)—along with 16 known secondary metabolites, were isolated from the CH2Cl2–CH3OH (1:1) extract of the roots of Tephrosia rhodesica. They were identified by NMR spectroscopic, mass spectrometric, X-ray crystallographic, and ECD spectroscopic analyses. The crude extract and the isolated compounds 2–5, 9, 15, and 21 showed activity (100% at 10 μg and IC50 = 5–15 μM) against the chloroquine-sensitive (3D7) strain of Plasmodium falciparum. peerReviewed

Plasmodium falciparumPharmaceutical Sciencemolecular structurehernekasvitCrystallography X-Ray01 natural sciencesPlant RootsArticleAnalytical ChemistryAntimalarialsflavonoiditPrenylationDrug DiscoveryBiological sciencesBiologynuclear magnetic resonance spectroscopyPharmacologyFlavonoidsPrenylationantimikrobiset yhdisteetOrganisk kemiChromatographybiologyStrain (chemistry)Molecular Structure010405 organic chemistryTephrosiaChemistrySpectrum AnalysisPharmacology. TherapycarbonOrganic ChemistryPlasmodium falciparumbiology.organism_classificationcircular dichroism spectroscopyluonnonaineetMass spectrometric0104 chemical sciences010404 medicinal & biomolecular chemistryChemistryComplementary and alternative medicineTephrosiaMolecular MedicineSpectrum analysismetabolism
researchProduct

Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

2017

In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation…

ClathrochelateScienceInorganic chemistryFormaldehydeSolid-stateGeneral Physics and Astronomy010402 general chemistryDFT01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyInorganic Chemistrychemistry.chemical_compoundhigh-valent ironNative metalOorganisk kemiMultidisciplinaryAqueous solution010405 organic chemistryQGeneral ChemistryDecompositionCoordination chemistry3. Good health0104 chemical scienceschemistryCageEarth (classical element)Nature Communications
researchProduct

Topical glaucoma medications – Clinical implications for the ocular surface

2022

Glaucoma is a leading cause of irreversible blindness. The use of topical eye drops to reduce intraocular pressure remains the mainstay treatment. These eye drops frequently contain preservatives designed to ensure sterility of the compound. A growing number of clinical and experimental studies report the detrimental effects of not only these preservatives but also the active pharmaceutical compounds on the ocular surface, with resultant tear film instability and dry eye disease. Herein, we critically appraise the published literature exploring the effects of preservatives and pharmaceutical compounds on the ocular surface. publishedVersion

Oorganisk kemiPreservatives PharmaceuticalGlaucomaMeibomian gland dysfunctionInorganic ChemistryOphthalmologyVDP::Medisinske Fag: 700::Klinisk medisinske fag: 750::Oftalmologi: 754:Medisinske Fag: 700 [VDP]TearsTopical medicationsHumansEyedropsDry Eye SyndromesDry eye diseaseOphthalmic SolutionsDry eye disease; Eyedrops; Glaucoma; Meibomian gland dysfunction; Topical medicationsAntihypertensive AgentsIntraocular Pressure
researchProduct

Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework.

2016

The synthesis of two molecular iron complexes, a dinuclear iron(III,III) complex and a nonanuclear iron complex, based on the di-nucleating ligand 2,2-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)(3)](3+). Funding Agencies|Knut and Alice Wallenberg Foundation; Swedish Research Council [621-2013-4872]; Carl Trygger Foundation; DFG (Metal Sites in Biomolecules: Structures, Regulation and Mechanisms) [IRTG 1422]; Swedish Energy Agency

Organisk kemiElectrolysis of water010405 organic chemistryChemistryLigandOrganic ChemistryInorganic chemistry010402 general chemistry01 natural sciences0104 chemical sciencesCatalysisInorganic Chemistryiron complexesligand frameworkFe complexes; ligand frameworkwater oxidationPolymer chemistryIron complexta116Dalton transactions (Cambridge, England : 2003)
researchProduct